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* 1. Introduction

Two distinct sublayers characterize the structure of the atmospheric

boundary layer: The constant flux layer, and the so-called Ekman layer.

The constant flux layer lies immediately above the surface to approximately

50 m. In this layer the vertical variations of momentum, heat, and moisture

fluxes are negligible and the wind direction is essentially constant. The

Ekman layer lies above the constant-flux layer; typically turbulent fluxes

within this layer decreases upward.

An important role played by the planetary boundary layer in general

circulation models (GCM) is the vertical exchange of fluxes of momentum,

mass, heat and moisture. Accurate account of these turbulent fluxes has

been the main focus in the boundary layer parameterization for GCM. Several

schemes currently attempt to parameterize the boundary layer fluxes csec. e.g.

Bhumralkar, 1976). The simplest employ the usual bulk transfer relations

with all the transfer coefficients for drag CD and heat CR assumed equal and

prescribed a pri6ri (Cressman, 1960). In some cases different values are

assigned for land and ocean surfaces and also some allowances made for various

stability conditions.

Recently, schemes have been formulated from similarity considerations of

the boundary layer. The basic assumptions underlying all similarity theories

are that the boundary layer flow is horizontally homogeneous and quasi-

stationary, a very restrictive assumption for many real atmospheric situations.

As pointed out by Arya (1977), in a GCM, however, the variables are considered

to be averaged horizontally over a fairly large grid area, and thus, the

assumption of horizontal homogeneity is probably well justified.

There are two basic similarity theories: generalized similarity and. Rossby Number similarity theories. The Rossby Number similarity theory assumes
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that boundary layer height is uniquely determined by a scale height which is

a function of some internal parameters of the boundary layer, while in the

generalized version, boundary layer height is considered an independent

variable. Moreover, in the latter, the effects of complicated factors such

as nonstationarity, diurnal heating, advection of heat and moisture, and

large scale subsidence, ete. can be taken into account indirectly by speci-

fying height of the boundary layer through a rate equation (Deardorff, 1974).

An alternative form of the similarity parametric relations originally

proposed by Deardorff (1972) uses the layer-averaged wind, temperature and

humidity. In this approach, the drag and heat transfer coefficients calcu-

lations are based on a set of nomograms in which surface fluxes of momentum

and heat are estimated.

The purpose of this paper is to examine these boundary layer parameteri-

zation schemes Csimilarity theories, Deardorff scheme and Cressman method).

We shall use observational data taken from the Wangara experiment CClarke, et

al., 1971). The Wangara experiment was conducted at Hay, Australia in 1968.

Thus, the test results are relevant only for the land surface. The writer

is in the process of conducting a similar test experiment using the Air Mass

Transformation Experiment (AMTEX) data which was conducted over the ocean.

The AMTEX experiment will be fully documented in a separate report.

2. Methods Tested

a. Similarity theory (Resistence Law)

2
The similarity theory parameterizes surface shear stress U* 

kinematic heat flux , , and moisture flux [t , by the matching

of mean profiles predicted by constant flux and Ekman layer similarity
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formulations (see Blackadar and Tennekes, 1968). The theory gives,

9- It : i A (A)]

0 : k(C &)/$ = -da i- ciA)j 0 

where u and v are the horizontal components of the mean velocity vector.

The subscript h refers to the variables at the top of the boundary layer,

while the subscript o to the variables at the surface. is surface

friction-velocity, f the scale temperature, and the scale humidity.

The surface shear stress Go , and surface heat flux HO= Cp ,

can thus be determined. 7_ is the roughness length of the underlying surface

f is Coriolis parameter, k is von Karman constant, f is air density, and is

specific heat at constant pressure. Empirical constants A(/A) , B (A) ,

C (a) and D(At) are the so-called similarity funcitons which are functions

of atmospheric stability parameter/ = /L , where h is the height of boundary

layer and L is surface Monin Obukhov length.

Thus, if the height of the boundary layer h is known, and the external

parameters it 0 and . at i= k are given, the internal parameters U y X

and ~ may be determined. For this study, we used observed data taken from

the Wangara experiment (Clarke, et al., 1971). In particular, the days of the

Wangara experiment as chosen by Melgarejo and Deardorff (1974), were selected

for analyses. Wind and temperature data at the observed boundary layer height
O 
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h, defined as the height to which significant cooling has extended as judged

both from individual profiles and their evolution in time, were used to compute

the surface fluxes of heat and momentum. This case may be referred to as the

generalized similarity theory. Based on the similarity theory, we also used

wind and temperature at two fixed values of h, i.e., h=1000 m and h=500 m.

This approach is simple for use in general circulation models. The latter two

cases may be referred to as the Rossby Number similarity theory.

The functional forms of the similarity functions A(A) 3 ~(t) , cg/A)

are taken from Yamada (1976). The procedure for determining the similarity

functions in terms of a bulk Richardson number is given in Appendix I.

b. Deardorff C1972) approach

We parameterize the surface heat flux and shear stress using a version

of the bulk aerodynamic method (Deardorff, 1972). Following Deardorff's

notation, we write Ho/ C= Co us (O Os- ) for surface heat flux, where

Co is the heat transfer coefficients, Os is the surface temperature, and 6
is mean potential temperature of the atmospheric boundary layer. The surface

.stress can be parameterized by L* - CU U 9 where Lk- ( L4V) '/

is the mean velocity within the boundary layer, and CAg is surface drag

coefficient.

The bulk transfer coefficients Co and C are expressed as functions

of the bulk Richardson number COMB given by

then, Ce and C are written as

Ow : u= a 25-~4p' ( O,26 &- o,o3o0- )

Ce -- ¢e~-:i, -I CL -' C-:
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where 

The neutral transfer

Cun =

For the stable case,

2 R .8 < o

coefficients CU. and Cej are given by

[ & (0.o2•h/io)/,k + If 4 J.

[ o074 A (o. o.2s 41o)/ - ] -1

C¢t and Ce are written as

c~ = C ( j - B/eC)

0 o = Co C A Sl;8cB 

c. Cressman C1960) method

Surface heat flux is given by

Ho/ CV = Cl (I 8 )
Momentum flux is parameterized by

:.: D A/ = Uy D 1 X I -
coefficient -3is specified for this studywhere the drag co efficient C~ is specified for this study as Cb= 2.3- o

3. Test Results

The surface friction velocity U and kinematic heat flux Wo C P

calculated by various methods for the Wangara data are tabulated in Appendix II

and III. The results are summarized in Tables 1 and 2. In addition, the values

calculated by Yamada (1976) and Melgarejo and Deardorff (1974) are included for

comparison. Note that their values were calculated by flux-profile relation-

ships of Businger, et al., (1971). Since the profile-flux relationships were

deduced from a carefully designed field experiment, use of the results ofD~~~~~~ 

o (- q;'B ) - 3. S-

US'



Yamada (1976) and Melgarejo and Deardorff (1974) is well justified. From

Tables 1 and 2, we see that values of L and IHl/ e( calculated by Yamada

(1976) are in good agreement with thoseof Melgarejo and Deardorff (1974).

Thus, for this study, the root mean square errors (RMSE) for various methods

were calculated with respect to the values of Melgarejo and Deardorff (1974)

(hereafter referred to MD). 

Under unstable conditions, Table 1 shows that mean friction velocity

calculated by various methods are satisfactory when compared with those of MD.

Moreover, values calculated by similarity theories are in better agreement with

those of MD than either Deardorff's (1972) approach or Cressman's method.

Furthermore, the RMSE values for the generalized similarity theory are not

much different from those for the Rossby Number similarity theories. This

suggests that during the unstable period, the Rossby Number similarity theory

is equally valid as the generalized similarity theory. This may be due to wind

and temperature profiles that are typically well mixed throughout the entire

boundary layer. As a consequence, little difference is expected between the

two similarity theories.

During the stable periods, Table 1 shows a large variability in mean friction

velocity calculated by different methods. Values of calculated by the

generalized similarity theory and Cressman (1960) method are much too large when

compared to those of MD. Values of I calculated by the Rossby Number similarity

theory are slightly better than those of the generalized similarity theory. This

may be caused by boundary layer heights that are somewhat indeterminate at-

stable hours (see Yu, 1978). As a result, parameterization of momentum flux

based on the generalized similarity theory is subject to large errors. Based
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on the RMSE values, we see that Deardorff (1972) method performs just as well

as the Rosshy Number similarity theory.

Table 2 summarizes kinematic heat fluxes calculated by various methods for

the Wangara data. Under the unstable conditions, as pointed out previously,

since the wind and temperature profiles are well mixed, heat fluxes calculated

by the Rossby Number similarity theory are not much different from those

calculated by the generalized similarity theory. However, the values calculated

by the similarity theories are much too large when compared to those of MD.

Although both Deardorff's (1972) approach and Cressman's (1960) method under-

estimate surface heat flux, they are in better agreement with the values of MD.

During the stable conditions, the values of kinematic heat fluxes (Table 2

*^ and Appendix III) calculated by the generalized similarity theory are least

satisfactory. Although the Deardorff (1972) method performs slightly better,

none of the methods tested are reliable.

4. Concluding Remarks

This study compares several boundary layer parameterization schemes for use

in large scale general circulation models. These methods include the generalized

similarity theory, the Rossby Number similarity theory, Deardorff's (1974) and

Cressman's (1960) methods. The following conclusions may be drawn:

(1) Parameterization of the boundary layer fluxes of momentum and heat

shows little difference between the generalized and the Rossby Number similarity

theories.

(2) Under the unstable atmospheric stability conditions, all the methods

tested are satisfactory in the surface friction velocity, and hence momentum. flux parameterization. We especially recommend the generalized similarity
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theory for use in GCM during the unstable condition. Although the Rossby

Number similarity theory performs equally well as the generalized theory, the

former may not be applicable near the tropics where the determination of the

boundary layer height by a scale height parameter such as -/ is no longer

valid.

(3) Under the stable atmospheric conditions, however, similarity theories

show great sensitivity to the height of the boundary layer. As a consequence,

parameterization of boundary layer fluxes by similarity theories are unreliable

unless the height of boundary layer can be determined with more certainty.

Though none of the methods tested are satisfactory, we recommend Deardorff's

(1972) scheme for its simplicity and its relatively slightly better performance

as compared to others.

(4) In spite of its crudeness, Cressman's (1960) method is comparable with

all the other more sophisticated schemes. The main disadvantage of the scheme,

however, lies in its arbitrariness on the specification of the drag coefficient.

Finally, it is of importance to know how much the errors in parameterizing

the boundary layer fluxes due to different methods contribute to the change in

wind speed and temperature. Let us consider the following,

__v . .4-
X ; at = ^, 0 :O ;:; 

Let us further assume that the first level of a GCM is at h=1000 m where the

boundary layer fluxes of momentum and heat are negligibly small as compared to

the surface values. Then, we have
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~~~~LL z~~~~~~~P

a~a 
_.- - X- 2. sa , k

- I~~ /

Cc:
Based on Tables 1 and 2, we assume errors of 4 and C~l r C respectively to

be 30 cm/sec and 30 cm °K/sec which can occur at stable conditions. For a

surface cross isobaric angle of - -30 9 we find

--- = -7 f- :- -o m. S

z= -4ro X to -v/

__~~~~~ f
~0 ~ k

Thus, we see that due to different parameterization schemes, a substantial

effect on the changes in air temperature may result. The effect on the change

of wind speed is relatively smaller however. This suggests that improvement in

the parameterization of boundary layer heat flux is far more important than

that in the momentum flux parameterization.
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APPENDIX I

Determination of the Similarity Functions

The purpose of this appendix is to show that similarity functions A, B, C,

and D can be determined in terms of a bulk Richardson number. In theory, these

similarity functions are functions of atmospheric stability e = /L , where

h is height of the boundary layer and L is surface Monin-Obukhov length defined

as L / X Noting that L is related to the internal parameter

and &which are yet to be determined by the similarity theory, it is not

practical to determine the similarity functions in terms of L.

Recently, Yamada C1976) reexamined the similarity functions based on the

Wangara data. Both in the stable and unstable conditions, his proposed similarity

functions show substantial improvement when compared with the observed data over

the previous work by Deardorff and Melgarejo (1975) and Arya (1974). By formu-

lating the similarity functions in terms of bulk Richardson numbers based on

Yamada's work (1976), we note that the bulk Richardson number is related

to the similarity functions by

o74 C ) =
L 

The similarity functions are defined as in Yamada (1976),

-l -2.u (A_ I,~) A , .< k/L
3o'2o 4 3 Zoo 1'/L

2, ( h/L - 1 247)

C = ) qae ,2 /-4 . / -it7,Y> 2? < &/L

, r < h/L .<

, I I < 4 :.

7� : =
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Under the unstable conditions,

A - lo a- 8 I.~ 9fg Io.- ooro374 L) 

=; ,o~o ( Lo- t2.o k/L)- /3

c -= I2. -~2, (I.o- o o3/ o ~ -)-a/ l

It follows that for a given set of values of k= k/L and roughness

parameter e , the corresponding values of A, B, and C are readily determined,

Now for given values of and we want to determine h/L and thus

A, B, and C. For this, the Newton-Ralphson method proves useful for stable

cases,

0 - 1>+J= :;+ L Qi ft(S(~) / f'(S;) 
where 4(X) o.7. :(o-c)/L(4-A)X+ 8 0

and cf.)= l 2 (AWf r^) L Bi 1(:--A 

where k=/L and ''= ( / C) The subscript i denotes the iteration

index, and prime denotes derivatives with respect to . The Newton-Ralphson

method was tested and found to converge within five iterations.

For unstable cases, a simple linear relationship exists between the bulk

Richardson number and ? i.e., r = Ji (Cq) where Co I (/)

and f( Cm ) o.ts C -C -? V

Table 3 shows the values of A, B, and C calculated by two different methods.

The values denoted with ( ) are those calculated with given bulk Richardson

numbers; those without ( ) are calculated based on given h/L. The agreement
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between these two methods is certainly remarkable.

The geostrophic drag CD and heat transfer coefficients CH are defined as

(Yamada, 1976),

3Sk . ( C() 3 (A

The calculated values of C and CH, based on these two different methods areD CH

shown in Fig 1. Very close agreement in the values of CD and CH between these

two methods is also well indicated.
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APPENDIX II: Surface Friction Velocity (cm/sec):
Wangara Data

Melgarejo
Generalized Rossby Rossby Deardorff Cressman Yamada Deardorff

Day Hour Similarity h=1000 h=500 (1972) (1960) (1976) (1976)

STABLE PERIOD

1 6

18
21

24
4 3

6

6 18

21

7 3

6

18

21

24

24
24

6
9

21
24

13 3

6

18

21

24
14 3

6

21
24

16 24
18 24
19 3

6

25 21
26 6

21

30 21
24

31 3

6

21

a 24

14.5
31.1
38.0
47.5

46.7
41.5
6.4

10.1

7.5

9.1

5.6
3.2
8.3

6.4

39.8
10.9

33.7

6.7

18.3

41.3
50.3
31.7
41.2

45.4
41.4
41.7

13.4
16.3

4.9
37.9
16.2
9.7

11.4
4.2

14.3

45.6

50.4
45.9
44.8
12.0

32.8

:. 0

£6;5

11.8
8.6
11.4

10.0

0.2

0.4
3.9
2.1

1.5
2.7
2.3

0.3
1.7
1.5

4.2
3.4
4.6
2.7

1.6
5.0
5.7

2.8
1.4

0.7

4.5
4.3
3.1
2.9
2.3
1.6

0.9
1.4

11.6

10.0

11.2

7.0
4.4
3.5

4.3

1i.6

14.1

22.3
44.2
45.5
41.8

0.8

1.4

5.7

3.6
3.0
2.3

3.9

0.7
7.7

8.9

7.8
6.1

7.9

50.0
6.8

10.9

8.8

12.8

8.1
5.3

4.2

6.6
1.6

12.6

4.4
2.5

3.0
1.6

10.8

48.0
47.0
17.9
21.8
4.7

7.5

16.47
21.03
24.93
33.46
29.33
26.41
8.08
15.78
12.14
15.38
9.84

0

12.93

7.90
30.29
17.07
24.48
14.14
22.90
28.36
30.60
18.67

28.61
26.67
27.20
27.17
14.86
19.69
8.58
26.35
18.36
14.13

14.48
7.05

13.47
31.39
33.07
30.28
27.95
14.17
21.54

35.1
37.3
44.5
62.8
56.0
52.2

19.1

35.9
39.7

39.8
22.0
29.7

39.3
15.3
56.1

39.4
37.8
45.2

47.8
47.8
63.1
36.6
50.3

50.1
45.1
53.0
31.2

47.9
23.7

43.2

36.3
31.6

32.4
21.2

30.3
51.9
59.9
56.5

53.4
32.4
37.2

4.7 5.5
11.0

9.4 12.4
16.8 16.5
11.7 14.2
19.1 15.8

5.8
6.6 3.8
5.0 3.9
6.3 5.0

4.7
4.2 11.4
6.9 10.4

0.8
12.9

17.1 15.4
21.6

11.1 12.4
10.9 10.6
10.1 4.1

9.0 9.8
4.4

7.2 1.4
6.8 6.7

12.0 7.8
13.5 13.1

5.0

8.0
10.6

13.5
12.4 11.4
12.1 10.0

3.4
5.6 3.8
7.1 6.4

15.4 14.1

19.3

14.6 12.5
13.5 13.4
5.0 9.0

7.7 10.7
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APPENDIX I Cont'd

Melgarejo
Generalized Rossby Rossby Deardorff Cressman Yamada Deardorff

Day Hour Similarity h=1000 h=500 (1972) (1960) (1976) (1976)

32 3 4.1 1.6 3.2 7.43 37.5 5.0 7.2
6 3.8 0.7 2.7 4.38 36.0 4.4 4.6

24 10.0 0.8 2.4 12.03 30.1 5.3 4.8
33 3 1.1 0.1 0.4 0 26.0 8.1 6.9

18 5.9 1.5 3.0 8.10 23.8 8.1
21 14.1 2.8 5.1 17.47 38.3 6.3 4.6
24 8.1 3.5 6.4 14.67 48.9 7.0 4.9

34 3 8.0 2.4 5.9 18.23 54.7 7.3 7.3
6 2.2 2.1 2.8 2.06 43.9 13.4 11.7

18 36.2 13.7 35.1 24.57 43.8 15.2
21 38.5 6.0 10.5 22.34 46.3 8.9 11.2

35 6 60.3 7.3 54.1 40.11 7.2 22.4 19.5
39 3 38.4 1.8 20.6 29.46 53.5 13.2 21.9

24 0.7 0.6 0 0 7.2 2.0
40 3 0.3 0.1 0.1 0 5.2 7.7

2 21 6.1 1.1 1.9 13.32 28.9 6.2 15.1I 24 14.0 2.3 2.6 17.92 37.6 6.5 14.7
3 44.7 4.2 12.8 31.42 55.1 15.6 14.7

44 3 62.0 61.2 64.7 43.45 71.0 27.8 26.6
6 69.1 65.8 69.0 47.51 80.0 28.2 27.0

UNSTABLE PERIOD

1 15 25.7 25.9 24.3 18.51 32.0 24.8
6 15 10.5 7.1 9.9 4.73 7.7 7.2
7 12 27.7 27.4 29.9 19.48 30.7 23.1 24.6

15 20.3 21.7 20.0 14.05 23.7 17.1 18.8
12 12 26.6 25.7 28.5 20.73 35.3 25.2 27.1
13 12 24.6 15.4 24.8 19.87 33.4 32.8 35.5

15 27.3 28.3 25.0 19.71 33.6 27.6 32.7
14 15 19.2 24.3 16.4 11.43 19.0 16.0 17.5
25 15 29.3 30.1 28.8 22.07 38.1 34.2
26 12 28..3 20.8 29.4 22.33 36.3 25.8 27.2

15 27.6 28.5 28.4 21.96 37.5 21.8 24.9
33 9 12.7 8.6 9.1 9.57 13.6 14.8

12 17.5 17.5 14.5 7.99 13.5 14.3 14.0
15 17.4 18.5 14.6 9.42 16.1 15.5 16.5

34 12 29.2 28.8 30.2 21.98 36.2 30.1 33.1
15 28.6 30.1 29.5 22.33 37.3 28.4 31.5

35 12 37.2 36.9 36.9 29.92 50.8 41.8 43.2
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APPENDIX III: Kinematic Heat Flux (cm s-l):
Wangara Data

Melgarej o
Generalized Rossby Rossby Deardorff Cressman Yamada Deardorff

Day Hour Similarity h=1000 h=500 (1972) (1960) (1976) (1976)

STABLE PERIOD

1 6

18

21

24
4 3

6

6 18

21
7 3

6

18
21
24

24
_ ~~24

6

9

21
24

13 3

6

18

21
24

14 3

6

21
24

16 24
18 24

19 3

6

25 21
26 6

21

30 21
24

31 3

6

@ 2 21
O

-7.49
-26.65
-42.57
-61.66
-41.88
-39.48
-1.39
-4.12
-2.95
-3.91
-1.12
-. 69

-3.01
-. 62

-60.19
-4.28
-26.39
-1.64
-10.68
-53.69
-105.80
-30.96
-64.05
-86.96
-79.30
-67.10
-6.05
-9.19
-1.19
-38.07
-8.41
-3.43
-3.41
-. 65

-4.81
-39.0
-53.11
-55.30
-66.10
-5.20

-. 06

-.80
-2.62
-1.75

-2.42
-1.97

0

-. 02

-.71

-.25

-. 09

-.38
-.28

-.16
-.14
-.53
-.46
-. 82

-.37
-.17
-. 61

-1.03
-. 41

-.14

-.05

-.73
-. 80

-.39
-.29
-. 23

-.13
-. 04
-.08

-2.17
-1.80
-2.42
-1.32
-.70
-.45

-.16
-3.42
-9.29

.-55.5
-42.1
-39.7
-.03
-.13

-1.63

-.73
-. 31

-. 36

-.78
-.02
-1.94
-2.79
-1.47
-1.38
-2.29
-84.80
-2.13
-2.53
-2.47
-5.54
-2.70
-1.23
-.77
-1.92
-.14
-3.47
-. 78

-.33
-. 31

-.12
-2.35
-42.0
-53.27
-6.79
-10.86

.87

-3.44
-2.75
-4.06
-6.86
-3.67
-3.26
-.92
-3.57
-2.45
-3.87
-.93

0

-2.61
.23

-6.27

-3 ;35
-3 .57

-5.43
:-6 18

J-8 .72

425:85

-6.71
--7i'73

-8. 34

-5.61
-2.59
-4.94
-1.30
-3.93
-3.29
-2.31
-2.00
-.57
-1.65
-4.36
-5.19
-5.54
-5.86
-2.67

-12.06
-6.71
-9.97
-18.65
-10.29
-9.82
-3.99
-14.29
-20.29
-19.99
-3.59

-16.17

-18.60
-.66

-16.64
-13.73
-6.59
-18.41
-18.23
-13.55
-28.58
-8.44
-16.05
-2.11
-17.74
-16.44
-8.82
-22.55
-7.69
-8.17
-9.96
-8.94
-7.71
-3.97
-6.43
-9.20
-13.11
-14.89
-16.54
-10.79

-.28

-.82
-1.53
-.94
-2.33

-.58

-.35

-.45

-.35
-.69

-1.31
-1.36

-.85
-.77

-1.08
-.74

-. 64
-.56
-1.19
-1.56
-.35

-1.71
-1.04
-.91

-. 23

-.47

-1.42
-1.71
-1.15
-.99

-. 36

-.35
-1.24
-1.10
-1.42
-1.24
-1.77

-.52
-.25
-.21
-.27
-.59
-2.52
-1.36
-0

-1.05
-1.18

-.14
-1.04
-.76
-.23
-.90
-.31
-.03
-.61

-.66
-1.49

-.43
-.97
-1.18
-1.25

-.92
-.68
-.16
-.13

-.39
-1.26
-1.65
-.92
-1.00
-.96
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APPENDIX III: Cont'd

Melgarejo
Generalized Rossby Rossby Deardorff Cressman Yamada Deardorff

Day Hour Similarity h=1000 h=500 (1972) (1960) (1976) (1976) 

24
32 3

6

24

33 3

18
21
24

34 3

6

18

21
35 6

39 3

24
3

21

24
43 3

44 3

6

-58.34
-.88
-. 81

-4.88
-. 11

-.99
-7.62
-2.94
-2.95
-.32

-27.52
-72.90
-74.45
-35.01

0

0

-1.45
-7.06
-64.83
-19.19
-18.93

-. 69

-.15
-.04
-.04

0

-.08
-.34
-.56
-.34
-. 27

-2.06
-1.19
-1.51
-.14

0

0

-. 06

-:.25

-.67
-35.44
-28.41

-2.01
-.55

-.45
-.33
-.02
-.26
-1.07
-1.90
-1.75
-.48

-22.35
-3.55
-67.14
-7.41

0

0

-. 18

-.34
-4.32
-25.16
-16.93

-5.96
-. 87

-.36
-2.84

0

-.73
-4.71

-3.31
-4.47
-.06
-3.20
-6.37
-6.47
-3.24

0

0

-1.73
-3.89
-6.92
-1.86

-.58

-13.77
-17.12
-18.47
-13.74
-11.38
-4.89
-17.47
-28.29
-30.99
-22.46
-7.85
-2.12
-15.99
-8.22
-2.14
-1.13
-7.37
-13.27
-16.44
-3.83
-1.28

-.48
-.22

-.27
-.36
-.59

-. 52

-.57
-.68
-1.19

-.83
-2.60
-1.00

-.51
-.48
-1.87
-2.53
-2.85

-.83
-.40
-.28
-.33
-.50
-. 91

-.34
-.30
-.57
-.74
-1.15
-1.00
-2.15
-.98
-.06

-.47
-1.73
-1.61
-1.88
-2.42
-2.73

UNSTABLE PERIOD

1 15

6 15

7 12

15

12 12
13 12

15

14 15
25 15
26 12

15

33 9

12

15

34 12
15

35 12

12.53
24.37
19.95
15.65

12.03
17.77
22.10
27.35
28.96
8.66
7.36
16.64
76.71
55.37
48.27
53.80
27.64

10.38
23.65
10.47
14.12
9.38
8.24

19.45
22.28
33.50
-.85

7.03
-1.40
76.71

55.86
42.36
52.93
22.02

21.93
25.80
16.08
16.67
17.09
18.87
25.40
25.56
35.36
10.26
7.77
1.05
74.45
49.68
48.85
50.41
32.59

2.03
1.11

2.85
1.99
2.37
2.77

3.36
2.47

4.69
1.41

1.21
2.22
3.68
3.23

6.43
6.33

5.12

4.63
2.21
5.43
4.32

5.25
6.01

7.45
5.21
10.68
2.84
2.69
3.42
7.92

7.15

13.26
13.52
11.30

7.60
3.91

8.63
10.34
9.21
6.11

3.63
1.95

18.61

9.44
13.44
10.97
14.56

3.39

4.43
7.04
4.58
7.97

11.75

10.80
7.30

11.79

3.73
3.55
8.86
15.86
13.59
19.48
17.91

16.93
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Fig. 1- Geostrophic drag coefficient CD (top) and geostrophic heat -transfer coo
efficient CH (bottom) calculated by given h/L values (solid lines) and by the Bulk
Richardson number approach (dashed lines) ,
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TABLE 1: Surface Friction velocity u* (cm/sec) calculated by
various methods for the Wangara Data

Generalized Rossby Number Rossby Number Melgarejo and
Similarity Siiilarity Similarity Deardorff (1972) Cressman (1960) IYamada Deardorff
Theory h=1000 m h=500 m App'roach Mebhod I(1976) (1975) (MD)

UNSTABLE CONDITIONS 
(Totally N=17 runs)

Mean 24.1 23.3 23.5 17.4 29.1 24.6 25.2

Standard 
Error 1.65 1.92 1.94 1.63 2.80 2.19 2.28

RMSE 4.1 6.3 4.5 8.6 5.7 

STABLE CONDITIONS
(Totally N=61 runs)

Mean 24.0 5.8 13.6 19.3 40.4 10.6 10.2

Standard 
Error 2.42 1.43 2.24 1.38 1.91 0.88 0.73

RMSE 21.1 9.8 14.6 12.2 32.7



-22-

-1 1 
TABLE 2: Kinematic Heat Flux H /pCp (cm/sec -lK) calculated by

various methods for the Wangara Data

Generalized Rossby Number Rossby Number Melgarejo and
Similarity Similarity Similarity Deardorff (1972) Cressman (1960) Yamada Deardorff

Theory h=1000 m h=500 m Approach Method (1976) (1975) (MD)

UNSTABLE CONDITIONS
(Totally N=17 runs)

23.89

5.28

22.64

28.11

4.55

23.37

3.13

0.40

7.76

6.66

0.87

4.11

STABLE CONDITIONS
(Totally N=61 runs)

-1.64

0.73

5.41

-8.9

2.32

19.52

-3.43

0.29

3.43

-12.27

0.89

13.35

9.11

2.52

9.9

1.30

-.89

0.08

-. 96

0.09

27.95

4.70

23.55

Mean

Standard
Error

RMSE

Standard
Error

RMSE

-24.98

3.64

36.96


